

Scaling Mental Health Access with Al-Powered Clinical Workflows

Improving mental health care in underserved areas using Google Gemini and precision prompt engineering

We partnered with a U.S.-based behavioral health platform whose mission is to make high-quality mental health care more accessible – especially for patients in rural and underserved areas. By integrating Google Gemini's AI capabilities and developing a high-precision prompt engineering framework, we enabled faster,

Business Challenge

The client's vision was to bring structured, Al-supported mental health care to communities that typically lack psychiatric infrastructure.

- \checkmark clinics
- \checkmark

To succeed, they needed to:

Drastically improve the efficiency of intake and diagnostic workflows across

The challenge was twofold:

Enable intelligent decision-support without overloading clinical staff

Support clinics operating in lowresource or geographically remote environments

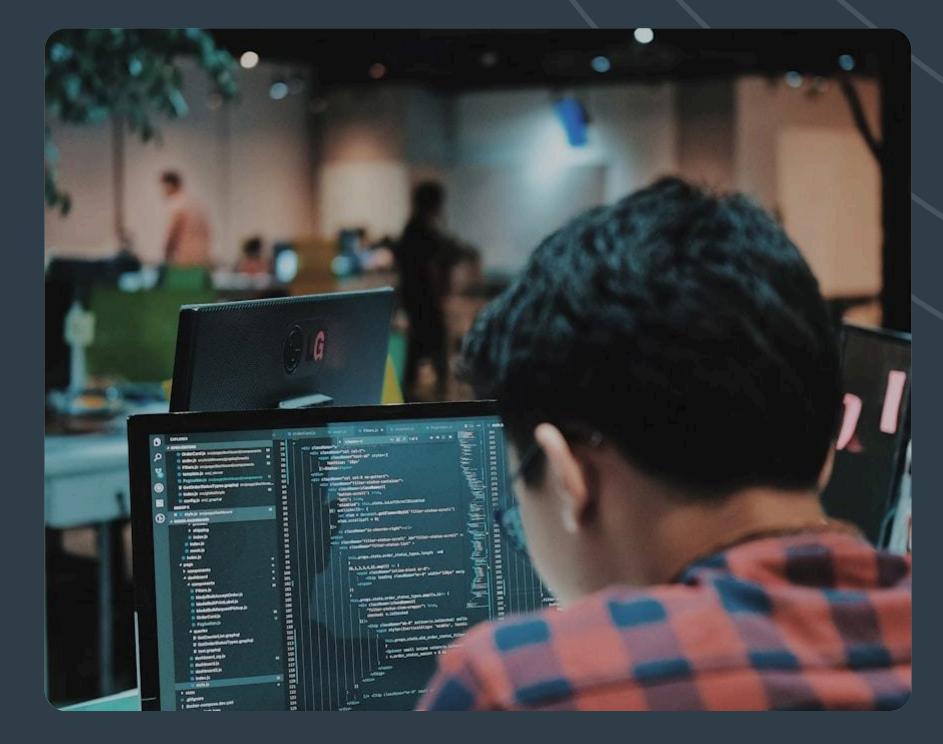
Accelerate clinical operations \checkmark while maintaining care quality

Technical Challenge

Working with AI in a clinical setting required extreme attention to accuracy, safety, and contextual nuance.

Core challenges included:

Building smart, adaptable prompts to engage Google Gemini with clinically relevant questions


Supporting 50+ assessment formats, including complex multisection tools and free-text responses

Integrating patientrecorded videos into the clinical workflow via speech-to-text and structured extraction

Preventing vague or risky suggestions

Model definitions

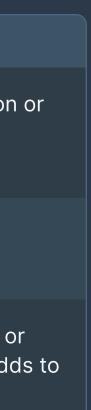
MODEL NAME	ARCHITECTURE	PROVIDER	PURPOSE	INPUT	OUTPUT	USAGE CONTEXT
MedSuggest-XGB	XGBoost (Gradient Boosting Trees)	Gemini ML Platform	Suggests probable diagnoses based on structured patient data	EHR vector: symptoms, vitals, history (~100 features)	Top-N diagnosis candidates with confidence scores	Triggered during in-person async consultation
SafeCheck-Net	Shallow Neural Network + Rule Engine	Custom (Python, ECS)	Validates doctor-entered diagnosis for contradictions	Diagnosis input + medication and condition context	Risk flags, validation messages	Real-time validation in physician UI
VideoDiag-Gemini	Multimodal Transformer + Speech2Text Pipeline	Gemini Multimodal API	Analyzes patient-recorded video responses and suggests possible conditions	Short recorded videos (60–120 sec), transcribed text	Suggested diagnosis + confidence score + structured symptom record	Used for remote patients or symptom triage intake; adds clinical record

Runtime characterictics

MODEL NAME	AVG INFERENCE TIME	RETRAINING FREQUENCY	CONTEXT VOLUME	EXPLAINABILITY	REAL-TIME COMPATIBLE
MedSuggest-XGB	~250 ms	Weekly	Structured data vector (~100 vars)	Feature importance (SHAP)	Ves 🗸
SafeCheck-Net	~300–400 ms	Quarterly (rules), Rare retrain	~20–30 input fields	Rules + traceable logic	Ves 🗸
VideoDiag-Gemini	~2–3 sec (incl. ASR)	No retraining (Gemini prompt)	~1–2 min spoken input + transcript (~300 tokens)	Natural-language explanation (prompt)	A Yes, but post-recording, not full live

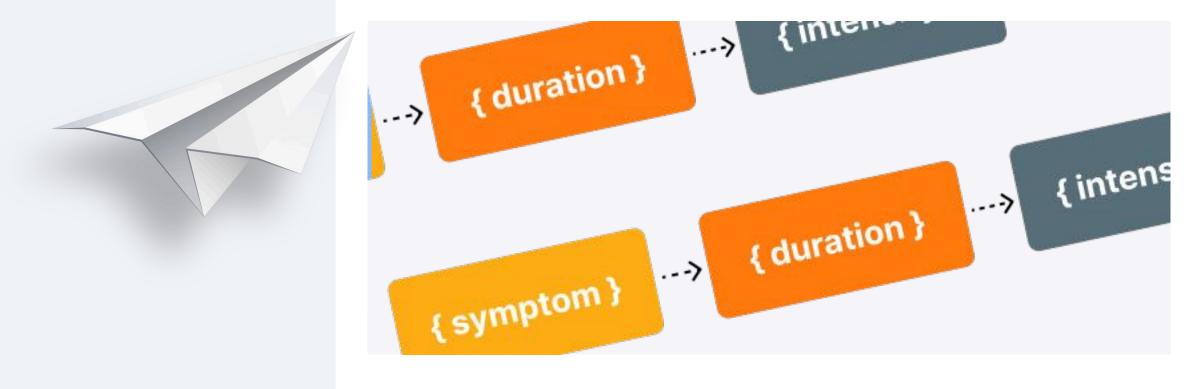
Tech Stack

React, GraphQL, Node.js, real-time assessment parser, clinical validation module


Node.js

React

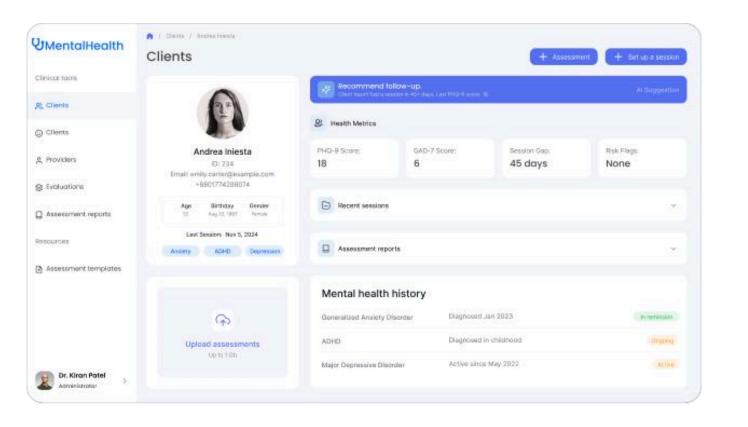
GraphQL


ully

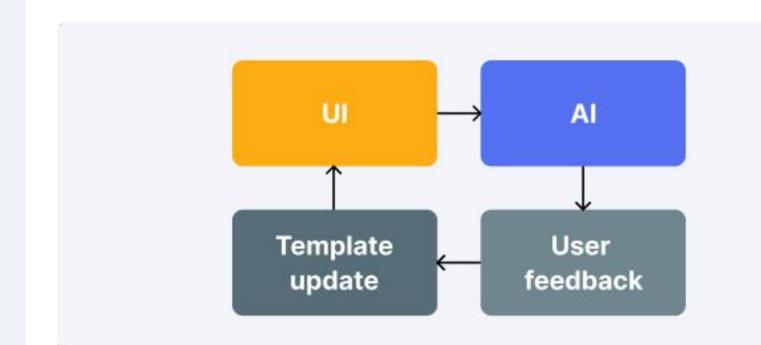
Our Solution

We engineered a dynamic AI interaction layer tailored for behavioral health assessments, enabling real-time communication with Google Gemini. Our prompt engine was built to accommodate a wide range of assessment types, patient inputs, and clinic-specific workflows.

Key Features


Context-aware prompt templates: Tailored prompts for clinical accuracy

Our dynamic prompts are adapted to each assessment type, patient input style, and care environment — ensuring AI responses are precise, clinically meaningful, and easy to interpret.


ns	Suggestion Arisk Suggestion Suggestion Suggestion Suggestion Suggestion Suggestion Suggestion Suggestion Suggestion Suggestion	

Al Risk Detection: Filtering vague or unsafe responses

Every AI-generated output is validated in real-time to catch ambiguity or clinical risk — preventing low-quality suggestions.

Real-Time Decision Support: Insights where they matter most

Continuous Prompt Optimization: Learning from real-world use

We monitor how clinicians interact with prompts and Al output, continuously refining templates to improve clarity, efficiency, and relevance.

This allowed providers to spend less time on documentation and interpretation, and more time with patients — especially important in rural clinics where staff are limited and every minute counts.

Clinically relevant AI suggestions appear directly in the interface – no context-switching, no delays.

Seamless System Integration: Compliance-ready and workflow-friendly

Our AI layer integrates fully with existing clinical systems, ensuring smooth adoption, data consistency, and regulatory compliance.

S siliconmint

Clinically-Driven Product Development

The product team maintained an active feedback loop with clinicians and operational staff at partner clinics. Product Owners conducted regular interviews with healthcare providers to understand pain points, unmet needs, and opportunities for improvement. Many new features — from UI enhancements to AI output tuning — were directly driven by this ongoing, clinician-informed discovery process.

1. Up to 10 customer feature requests collected weekly

Direct input from clinicians ensures we build what truly matters.

2. Requests prioritized by frequency and urgency

The most common pain points rise to the top of our backlog.

3. Feasibility and impact assessed before each sprint

We commit only to features that are timely, useful, and buildable.

5. Live demos conducted with real providers

We validate value in real time and gather actionable feedback.

Features developed and tested in tight cycles

Delivery is fast, focused, and aligned with clinical workflows.

6. Iterative delivery with postlaunch feedback

We track adoption and adjust based on how features perform.

We demo, we listen, we improve.

Appointments **U**MentalHealth Appointments Clinical tools * \$* Clients 3 clients 2 clients flagged for follow-up (PHQ-9 >15) 兴 Appointments Q Search A Providers Client name Date & Time ID May 20, 2025 · 14:30 231 Emily Carter Assessment reports Sophie Bennett May 20, 2025 · 14:30 231 Resources May 20, 2025 · 16:00 231 Liam Johnson Assessment templates May 20, 2025 · 17:30 231 Ava Thompson 231 Noah Williams May 20, 2025 - 16:00 May 20, 2025 · 17:30 231 Mia Davis 10 🗸 Items per page Dr. Kiran Patel > Administrator

		+ New Appointmen		
Al Suggestion Review recommended.	Al Suggestion 5 clients haven't been assessed in 90+ days	Clien engagement This Week Total clients 34 +15.80%		
	🏹 Filter This Week 🗸	Recent high-risk flags		
Appointment Type	Flags / Al Alerts	Pending reports		
Telehealth	No contact for 45+ days	8		
Telehealth	No contact for 45+ days	Calendar		
Offline	GAD-7 trend 1 over 3	Tomorrow, July 24, 2024		
Offline	Last session flagged mode	Alexandra Johnson 9:00		
		Michael Thompson 10:30		
Offline	GAD-7 trend ↑ over 3	Samantha Lee 10:30		
Offline	Last session flagged mode	David Martinez 10:30		
	< >	Jessica Chen 10:30		

Impact

Expanded access to care

in rural areas through increased throughput

3-4× faster clinic onboarding

enabling rapid scale

~50% reduction

in time to interpret assessments

>90% provider validation accuracy

on AI diagnostic suggestions

50+ assessment types supported

enabling consistency across providers

(a.event.special.ub.thandler.applate (a.event.special.ub.thandler.applate (a.event.special.ub.thandleobj.handler.applate (a.event.special.ub.thandleobj.handler.applate (a.event.special.ub.thandleobj.handler.applate (a.event.special.ub.thandleobj.handleobj.handler.applate (a.event.special.ub.thandleobj.handleob

class(is.alert*).remove())var basClass("alert*)//
class("alert*)//
cl

is a left.data-api", c, d. prototype.close) + (10, mail to the second (15, button"), f="object"==typeor backas a second (15, button"), f="object", typeor backas a second (15, button"), f="obj

(this.isLoading=!1,d.removeClass(c).removeAttr(c))); this
(this.isLoading=!1,d.removeClass(c).removeAttr(c))); this

is(c.prop("checked")&&this.\$element.hasClass("active"));; c.prop("checked",!this.\$element.hasClass("active"));; c.proventhefault()})}(jQuery),+function(a){"use strate"; c.proventhefault()})}(jQuery),+function(a){"use strate"; c.proventhefault()});(jQuery),+function(a){"use strate"; c.proventhefault()});(jQuery),+function(a){"use strate"; c.proventhefault()});(jQuery),+function(a){"use strate"; c.proventhefault()});(jQuery),+function(a){"use strate"; c.proventhefault()});(jQuery),+function(a){"use strate"; c.proventhefault()};(jQuery),+function(a){"use strate"; c.proventhefault()};(jQuery),+function(a){"use strate"; c.proventhefault()};(jQuery),+function(a){"use strate"; c.proventhefault()};(jQuery),+function(a){"use strate"; c.proventhefault()};(jQuery),+function(b){"use strate"; c.proventhefault()};(jQuery),+function(a){"use strate"; c.proventhefault()};(jQuery),+function(b){"use strate"; c.proventhefault()

(this next, this), this, options.

unction(){return this slide mem" = b?"first":"last", i=this slide this.sliding=!1;var last": is befaultPrevented()); l=a(this.\$indicators.childered); return a.support.transition

stand -slice(0,-1))):(d.removeClass('sections'));(d.removeClass('sections'));(d.removeClass('sections'));(d.replacel.data-api","(data-sliss('sections'));(d.replacel.data-api","(data-sliss('sections'));(d.replacel.data-sliss('sections'));(d.r

